The Preparation of α-Phosphonovinylzirconocenes and their Application in the Stereospecific Synthesis of α-Halo-1-alkenylphosphonates

Zheng Chang XIONG 1, Lu Ling WU 1, Xian HUANG 1, 2 *

¹Department of Chemistry, Zhejiang University, Xixi Campus, Hangzhou 310028. ² State key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032.

Abstract: Hydrozirconation of 1-alkylnylphosphonates gives the organozirconium(IV) complexes **2** in *syn*-addition way. Complexes **2** was trapped with NCS, NBS or I_2 to afford stereodifined α -halo-1-alkenylphosphonates in moderate to high yields.

Keywords: 1-Alkynylphosphonates, hydrozirconation, α -halo-1-alkenylphosphonates.

The use of 1-alkynylphosphonates in organic synthesis has attracted increasing interest in recent years 1 . On the other hand, it has become popular to transform alkenylzirconium (IV) complexes to other functional groups with a high level of stereochemical purity 2 . However, no efforts have been focused on the bifunctional ethenyl reagents containing phosphor and zirconium, these compounds are important intermediates in organic synthesis, they can be converted to a variety of α -substituted-1-alkenylphosphonates. Herein, we wish to report the synthesis of α -phosphonovinyl zirconocene and their reaction with electrophiles via the hydrozirconation of 1-alkynylphosphonates.

The hydrozirconation of the 1-alkenylphosphonates with 1.0 equiv of Cp_2Zr (H)Cl in THF for 15 min at room temperature gave a clear solution of **2**. The hydrolysis or deuterolysis of **2** afforded Z-vinylphosphonate **3** or Z-α-deuterovinylphosphonate **4**, respectively (**Scheme 1**). For example, the hydrozirconation-hydrolysis of 1-hexenylphosphonate afforded Z-vinylphosphonate **3b.** The ¹HNMR spectrum of 1-hexenylphosphonate exhibits a ddt peak at δ 6.56 (${}^3J_{HP}$ =53Hz, ${}^3J_{CH2CH=C}$ =7.6Hz, ${}^3J_{CH=CH}$ =13.0Hz) and dd peak at δ 5.58. The Z-olefinic geometry of **3b** was verified by the coupling constant of the vicinal olefinic protons and the coupling constant of β-vinylhydron and phosphor atom (${}^3J_{HH}$ =13.0Hz, ${}^3J_{HP}$ =53 Hz). In addition, the ¹H NMR spectrum of the product is also identical to the previous reported³. After the parallel experiment of hydrozirconation-deuterolysis, the disappearance of the dd peak at

_

^{*} E-mail: huangx@mail.hz.zj.cn

 δ 6.26 shows that the deuterium must be attached to the α -position of the phosphonate group. The hydrozirconation of other 1-alkenylphosphonates gives the similar results.

Complexes 2 can react with various electrophiles such as NCS, NBS, I_2 to give stereodefined α -halo-vinylphosphonates (**Scheme 2, Table 1**), which are a class of important synthetic intermediates and useful reagents for the synthesis of biologically active compounds or as investigative reagents⁴.

Scheme 2

$$\left[\begin{array}{c} R \\ H \end{array}\right] \xrightarrow{P(O)(OEt)_2} \left[\begin{array}{c} NCS, NBS \text{ or } I_2 \\ rt, 30 \text{ min} \end{array}\right] \xrightarrow{R} \left[\begin{array}{c} P(O)(OEt)_2 \\ X \end{array}\right]$$

2 a-c 5 a-i

Table 1 Reaction of 2 with electrophiles

Entry	R	E-X a	Product	Yield (%) ^b
1	$MeOCH_2$	NCS	5a	73
2	$MeOCH_2$	NBS	5b	68
3	$MeOCH_2$	I_2	5c	70
4	n-C ₄ H ₉	NCS	5d	57
5	n-C ₄ H ₉	NBS	5e	61
6	n-C ₄ H ₉	I_2	5f	67
7	$n-C_5H_{11}$	NCS	5g	64
8	$n-C_5H_{11}$	NBS	5h	70
9	n-C ₅ H ₁₁	I_2	5i	63

^a Reaction conditions: E-X (1.0 equiv.), THF, rt, 30 min.

^b Isolated yields based on 1-alkynylphosphonates.

388 The Preparation of α-Phosphonovinylzirconocenes and their Application

In summary, we have studied the hydrozirconation of 1-alkynylphosphonates and the reaction of organozirconium (IV) complexs ${\bf 2}$ with electrophiles such as NCS, NBS, and I_2 . This procedure provides a facile route to the synthesis of stereodefined α -halo-vinylphosphonates

Acknowledgments

We thank the Doctoral Foundation of the National Education Ministry of China for financial support of this research.

References

- For a recent review, see: B. Iorga, D. Carmichael, P. Savignac. Eur. J. Org. Chem., 2000, 3103
- 2. P. Wipf, H. Jahn. Tetrahedron, 1996, 52, 12853.
- 3. A. A. A. Quntar, M. Srebnik. Org. Lett., 2001, 3, 1379.
- 4. For a recent review, see: I. T. Minami, J. Motoyosiya. Synthesis, 1992, 333.

Received 21 March, 2003